首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Model Structure Optimization for Fuel Cell Polarization Curves
  • 本地全文:下载
  • 作者:Markku Ohenoja ; Aki Sorsa ; Kauko Leiviskä
  • 期刊名称:Computers
  • 电子版ISSN:2073-431X
  • 出版年度:2018
  • 卷号:7
  • 期号:4
  • 页码:60-71
  • DOI:10.3390/computers7040060
  • 出版社:MDPI Publishing
  • 摘要:The applications of evolutionary optimizers such as genetic algorithms, differential evolution, and various swarm optimizers to the parameter estimation of the fuel cell polarization curve models have increased. This study takes a novel approach on utilizing evolutionary optimization in fuel cell modeling. Model structure identification is performed with genetic algorithms in order to determine an optimized representation of a polarization curve model with linear model parameters. The optimization is repeated with a different set of input variables and varying model complexity. The resulted model can successfully be generalized for different fuel cells and varying operating conditions, and therefore be readily applicable to fuel cell system simulations.
  • 关键词:model identification; genetic algorithms; fuel cell model identification ; genetic algorithms ; fuel cell
国家哲学社会科学文献中心版权所有