摘要:Hen eggs are classified into four groups according to their production method: Organic, free-range, barn, or caged. It is known that a fraudulent practice is the misrepresentation of a high-quality egg with a lower one. In this work, high-performance liquid chromatography with ultraviolet detection (HPLC-UV) fingerprints were proposed as a source of potential chemical descriptors to achieve the classification of hen eggs according to their labelled type. A reversed-phase separation was optimized to obtain discriminant enough chromatographic fingerprints, which were subsequently processed by means of principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Particular trends were observed for organic and caged hen eggs by PCA and, as expected, these groupings were improved by PLS-DA. The applicability of the method to distinguish egg manufacturer and size was also studied by PLS-DA, observing variations in the HPLC-UV fingerprints in both cases. Moreover, the classification of higher class eggs, in front of any other with one lower, and hence cheaper, was studied by building paired PLS-DA models, reaching a classification rate of at least 82.6% (100% for organic vs. non-organic hen eggs) and demonstrating the suitability of the proposed method.
关键词:HPLC-UV; fingerprinting; food classification; hen eggs; principal component analysis; partial least square-discriminant analysis HPLC-UV ; fingerprinting ; food classification ; hen eggs ; principal component analysis ; partial least square-discriminant analysis