摘要:Ultrafiltration (UF) can be used to concentrate yogurt to produce Greek-style yogurt (GSY) (UF-YOG), but this generates acid whey permeate, which is an environmental issue. However, when UF is applied before fermentation (UF-MILK), a nonacidified whey permeate is generated. For this study, two model GSYs (UF-YOG and UF-MILK) were produced to compare the composition, UF performance, and energy consumption of the two processes. For UF-MILK, skim milk was ultrafiltered with a 30 kDa spiral-wound UF membrane to achieve a 3× volume reduction factor (VRF). The retentate was fermented to a pH of 4.5. The UF-YOG process was the same except that regular yogurt was ultrafiltered. Both GSYs had similar protein (~10%) and solid content (~17%). As expected, lactic acid/lactate was not detected in UF-MILK permeate, while 7.3 g/kg was recovered from the UF-YOG permeate. Permeation flux values (11.6 to 13.3 L m−2 h−1) and total flux decline (47% to 50%) were constant during UF-MILK, whereas drastic decreases in these two membrane performance indicators (average flux: 38.5 to 10.9 L m−2 h−1; total flux decline: 2% to 38%) were calculated for UF-YOG. Moreover, for UF-YOG, UF membrane performance never recovered, even when drastic and repeated cleaning steps were applied. Energy consumption was 1.6 kWh/kg GSY and remained constant for UF-MILK, whereas it increased from 0.6 to 1.5 kWh/kg GSY for UF-YOG. Our results show that, although the composition of GSYs was similar for both processes, the UF step of yogurt concentration affected process efficiency due to drastic and permanent membrane fouling.
关键词:Greek-style yogurt; ultrafiltration; acid whey membrane fouling; energy consumption