首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Discrimination of Grape Seeds Using Laser-Induced Breakdown Spectroscopy in Combination with Region Selection and Supervised Classification Methods
  • 本地全文:下载
  • 作者:Yong He ; Yiying Zhao ; Chu Zhang
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2020
  • 卷号:9
  • 期号:2
  • 页码:199-212
  • DOI:10.3390/foods9020199
  • 出版社:MDPI Publishing
  • 摘要:The wine-making industry generates a considerable amount of grape pomace. Grape seeds, as an important part of pomace, are rich in bioactive compounds and can be reutilized to produce useful derivatives. The nutritional properties of grape seeds are largely influenced by the cultivar, which calls for effective identification. In the present work, the spectral profiles of grape seeds belonging to three different cultivars were collected by laser-induced breakdown spectroscopy (LIBS). Three conventional supervised classification methods and a deep learning method, a one-dimensional convolutional neural network (CNN), were applied to establish discriminant models to explore the relationship between spectral responses and cultivar information. Interval partial least squares (iPLS) algorithm was successfully used to extract the spectral region (402.74–426.87 nm) relevant for elemental composition in grape seeds. By comparing the discriminant models based on the full spectra and the selected spectral regions, the CNN model based on the full spectra achieved the optimal overall performance, with classification accuracy of 100% and 96.7% for the calibration and prediction sets, respectively. This work demonstrated the reliability of LIBS as a rapid and accurate approach for identifying grape seeds and will assist in the utilization of certain genotypes with desirable nutritional properties essential for production rather than their being discarded as waste.
  • 关键词:grape seed; laser-induced breakdown spectroscopy; supervised classification; deep learning; region selection grape seed ; laser-induced breakdown spectroscopy ; supervised classification ; deep learning ; region selection
国家哲学社会科学文献中心版权所有