首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Homogeneous Data Normalization and Deep Learning: A Case Study in Human Activity Classification
  • 本地全文:下载
  • 作者:Ivan Miguel Pires ; Faisal Hussain ; Nuno M. Garcia
  • 期刊名称:Future Internet
  • 电子版ISSN:1999-5903
  • 出版年度:2020
  • 卷号:12
  • 期号:11
  • 页码:194-207
  • DOI:10.3390/fi12110194
  • 出版社:MDPI Publishing
  • 摘要:One class of applications for human activity recognition methods is found in mobile devices for monitoring older adults and people with special needs. Recently, many studies were performed to create intelligent methods for the recognition of human activities. However, the different mobile devices in the market acquire the data from sensors at different frequencies. This paper focuses on implementing four data normalization techniques, i.e., MaxAbsScaler, MinMaxScaler, RobustScaler, and Z-Score. Subsequently, we evaluate the impact of the normalization algorithms with deep neural networks (DNN) for the classification of the human activities. The impact of the data normalization was counterintuitive, resulting in a degradation of performance. Namely, when using the accelerometer data, the accuracy dropped from about 79% to only 53% for the best normalization approach. Similarly, for the gyroscope data, the accuracy without normalization was about 81.5%, whereas with the best normalization, it was only 60%. It can be concluded that data normalization techniques are not helpful in classification problems with homogeneous data.
  • 关键词:human activities; data normalization; data classification; sensors; mobile devices; data processing human activities ; data normalization ; data classification ; sensors ; mobile devices ; data processing
国家哲学社会科学文献中心版权所有