首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Imbalanced Learning Based on Data-Partition and SMOTE
  • 本地全文:下载
  • 作者:Huaping Guo ; Jun Zhou ; Chang-An Wu
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2018
  • 卷号:9
  • 期号:9
  • 页码:238-259
  • DOI:10.3390/info9090238
  • 出版社:MDPI Publishing
  • 摘要:Classification of data with imbalanced class distribution has encountered a significant drawback by most conventional classification learning methods which assume a relatively balanced class distribution. This paper proposes a novel classification method based on data-partition and SMOTE for imbalanced learning. The proposed method differs from conventional ones in both the learning and prediction stages. For the learning stage, the proposed method uses the following three steps to learn a class-imbalance oriented model: (1) partitioning the majority class into several clusters using data partition methods such as K-Means, (2) constructing a novel training set using SMOTE on each data set obtained by merging each cluster with the minority class, and (3) learning a classification model on each training set using convention classification learning methods including decision tree, SVM and neural network. Therefore, a classifier repository consisting of several classification models is constructed. With respect to the prediction stage, for a given example to be classified, the proposed method uses the partition model constructed in the learning stage to select a model from the classifier repository to predict the example. Comprehensive experiments on KEEL data sets show that the proposed method outperforms some other existing methods on evaluation measures of recall, g-mean, f-measure and AUC.
  • 关键词:data-partition; imbalanced learning; SMOTE data-partition ; imbalanced learning ; SMOTE
国家哲学社会科学文献中心版权所有