首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:MiNgMatch—A Fast N-gram Model for Word Segmentation of the Ainu Language
  • 本地全文:下载
  • 作者:Karol Nowakowski ; Michal Ptaszynski ; Fumito Masui
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2019
  • 卷号:10
  • 期号:10
  • 页码:317-335
  • DOI:10.3390/info10100317
  • 出版社:MDPI Publishing
  • 摘要:Word segmentation is an essential task in automatic language processing for languages where there are no explicit word boundary markers, or where space-delimited orthographic words are too coarse-grained. In this paper we introduce the MiNgMatch Segmenter—a fast word segmentation algorithm, which reduces the problem of identifying word boundaries to finding the shortest sequence of lexical n-grams matching the input text. In order to validate our method in a low-resource scenario involving extremely sparse data, we tested it with a small corpus of text in the critically endangered language of the Ainu people living in northern parts of Japan. Furthermore, we performed a series of experiments comparing our algorithm with systems utilizing state-of-the-art lexical n-gram-based language modelling techniques (namely, Stupid Backoff model and a model with modified Kneser-Ney smoothing), as well as a neural model performing word segmentation as character sequence labelling. The experimental results we obtained demonstrate the high performance of our algorithm, comparable with the other best-performing models. Given its low computational cost and competitive results, we believe that the proposed approach could be extended to other languages, and possibly also to other Natural Language Processing tasks, such as speech recognition.
  • 关键词:word segmentation; tokenization; language modelling; n-gram models; Ainu language; endangered languages; under-resourced languages word segmentation ; tokenization ; language modelling ; n-gram models ; Ainu language ; endangered languages ; under-resourced languages
国家哲学社会科学文献中心版权所有