摘要:In recent years, the adoption of industrial wireless sensor and actuator networks (IWSANs) has greatly increased. However, the time-critical performance of IWSANs is considerably affected by external sources of interference. In particular, when an IEEE 802.11 network is coexisting in the same environment, a significant drop in communication reliability is observed. This, in turn, represents one of the main challenges for a wide-scale adoption of IWSAN. Interference classification through spectrum sensing is a possible step towards interference mitigation, but the long sampling window required by many of the approaches in the literature undermines their run-time applicability in time-slotted channel hopping (TSCH)-based IWSAN. Aiming at minimizing both the sensing time and the memory footprint of the collected samples, a centralized interference classifier based on support vector machines (SVMs) is introduced in this article. The proposed mechanism, tested with sample traces collected in industrial scenarios, enables the classification of interference from IEEE 802.11 networks and microwave ovens, while ensuring high classification accuracy with a sensing duration below 300 ms. In addition, the obtained results show that the fast classification together with a contained sampling frequency ensure the suitability of the method for TSCH-based IWSAN.
关键词:industrial wireless sensor and actuator networks; support vector machine; interference classification; spectrum-sensing; wireless LAN; microwave oven industrial wireless sensor and actuator networks ; support vector machine ; interference classification ; spectrum-sensing ; wireless LAN ; microwave oven