摘要:Fetal development is modulated by maternal nutrition during pregnancy. The dietary intake of linoleic acid (LA), an essential dietary n-6 polyunsaturated fatty acid (PUFA), has increased. We previously published that increased LA consumption during pregnancy does not alter offspring or placental weight but fetal plasma fatty acid composition; the developing fetus obtains their required PUFA from the maternal circulation. However, it is unknown if increased maternal linoleic acid alters placental fatty acid storage, metabolism, transport, and general placental function. Female Wistar-Kyoto rats were fed either a low LA diet (LLA; 1.44% of energy from LA) or high LA diet (HLA; 6.21% of energy from LA) for 10 weeks before pregnancy and during gestation. Rats were sacrificed at embryonic day 20 (E20, term = 22 days) and placentae collected. The labyrinth of placentae from one male and one female fetus from each litter were analyzed. High maternal LA consumption increased placental total n-6 and LA concentrations, and decreased total n-3 PUFA, alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA). Fatty acid desaturase 1 (Fads1), angiopoietin-like 4 (Angptl4), and diacylglycerol lipase beta (Daglb) mRNA were downregulated in placentae from offspring from HLA dams. Maternal high LA downregulated the fatty acid transport protein 4 (Fatp4) and glucose transporter 1 (Slc2a1) mRNA in placentae. IL-7 and IL-10 protein were decreased in placentae from offspring from HLA dams. In conclusion, a high maternal LA diet alters the placental fatty acid composition, inflammatory proteins, and expressions of nutrient transporters, which may program deleterious outcomes in offspring.