首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Vitamin D Inhibits Myogenic Cell Fusion and Expression of Fusogenic Genes
  • 本地全文:下载
  • 作者:Tohru Hosoyama ; Hiroki Iida ; Minako Kawai-Takaishi
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2020
  • 卷号:12
  • 期号:8
  • 页码:2192-2204
  • DOI:10.3390/nu12082192
  • 出版社:MDPI Publishing
  • 摘要:Vitamin D, a fat-soluble vitamin, is an important nutrient for tissue homeostasis and is recently gaining attention for its role in sarcopenia. Although several studies have focused on the role of vitamin D in muscle homeostasis, the molecular mechanism underlying its action on skeletal muscle remains unclear. This study investigated the role of vitamin D in myogenesis and muscle fiber maintenance in an immortalized mouse myogenic cell line. A high concentration of active vitamin D, 1α,25(OH)2D3, decreased the expression of myogenic regulatory factors (MRFs), myf5 and myogenin in proliferating myoblasts. In addition, high concentration of vitamin D reduced myoblast-to-myoblast and myoblast-to-myotube fusion through the inhibition of Tmem8c (myomaker) and Gm7325 (myomerger), which encode muscle-specific fusion-related micropeptides. A similar inhibitory effect of vitamin D was also observed in immortalized human myogenic cells. A high concentration of vitamin D also induced hypertrophy of multinucleated myotubes by stimulating protein anabolism. The results from this study indicated that vitamin D had both positive and negative effects on muscle homeostasis, such as in muscle regeneration and myofiber maintenance. Elderly individuals face a higher risk of falling and suffering fractures; hence, administration of vitamin D for treating fractures in the elderly could actually promote fusion impairment and, consequently, severe defects in muscle regeneration. Therefore, our results suggest that vitamin D replacement therapy should be used for prevention of age-related muscle loss, rather than for treatment of sarcopenia.
  • 关键词:vitamin D; cell fusion; fusogenic gene; hypertrophy; sarcopenia vitamin D ; cell fusion ; fusogenic gene ; hypertrophy ; sarcopenia
国家哲学社会科学文献中心版权所有