摘要:In this paper, the graphene-assisted Goos–Hänchen (GH) shift of the optical beam reflected from a planar multilayer configuration is investigated. The increased positive Goos–Hänchen shifts can be modulated by adjusting the Fermi energy due to graphene with unique optical properties in the visible light range. Moreover, the GH shift can be tuned by varying the layers of graphene, the thickness of the medium, incident wavelength, and so on. These results will be useful for designing the novel graphene-based optical sensing and switching.