首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:Groundwater dynamics in the Vietnamese Mekong Delta: Trends, memory effects, and response times
  • 本地全文:下载
  • 作者:Nguyen Le Duy ; Triet Van Khanh Nguyen ; Dung Viet Nguyen
  • 期刊名称:Journal of Hydrology: Regional Studies
  • 印刷版ISSN:2214-5818
  • 出版年度:2021
  • 卷号:33
  • 页码:100746
  • DOI:10.1016/j.ejrh.2020.100746
  • 出版社:Elsevier B.V.
  • 摘要:Study Region Vietnamese Mekong Delta. Study focus This study investigates the trends of groundwater levels (GWLs), the memory effect of alluvial aquifers, and the response times between surface water and groundwater across the Vietnamese Mekong Delta (VMD). Trend analysis, auto- and cross-correlation, and time-series decomposition were applied within a moving window approach to examine non-stationary behavior. New hydrological insights Our study revealed an effective connection between the shallowest aquifer unit (Holocene) and surface water, and a high potential for shallow groundwater recharge. However, low-permeable aquicludes separating the aquifers behave as low-pass filters that reduce the high‐frequency signals in the GWL variations, and limit the recharge to the deep groundwater. Declining GWLs (0.01−0.55 m/year) were detected for all aquifers throughout the 22 years of observation, indicating that the groundwater abstraction exceeds groundwater recharge. Stronger declining trends were detected for deeper groundwater. The dynamic trend analysis indicates that the decrease of GWLs accelerated continuously. The groundwater memory effect varied according to the geographical location, being shorter in shallow aquifers and flood-prone areas and longer in deep aquifers and coastal areas. Variation of the response time between the river and alluvial aquifers was controlled by groundwater depth and season. The response time was shorter during the flood season, indicating that the bulk of groundwater recharge occurred in the late flood season, particularly in the deep aquifers.
  • 关键词:Groundwater statistics ; Time-series analysis ; Moving window ; Groundwater/surface water interactions ; Alluvial aquifers
国家哲学社会科学文献中心版权所有