摘要:weather is the most important factor affecting the photovoltaic power generation.In this paper, the irradiance data of a photovoltaic power station in crodora in 2020 are collected, and the daily out of ground irradiance and the measured irradiance curve of that day are compared and observed, then the weather of that year is classified by human work, and then the daily irradiance data records are counted for the relevant indicators, with the maximum third order Based on the attributes of difference value, discrete difference and normalized variance, it is unified with the classified weather type.Then, the SVM prediction model of weather category is established based on radial basis function, and the optimal model parameters are determined by cross validation, so that a large number of historical date weather categories can be classified and predicted.This is obviously different from the traditional prediction method based on linear statistical theory, and the results show that it has a good effect.