首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Characterization and identification of lysine crotonylation sites based on machine learning method on both plant and mammalian
  • 其他标题:Characterization and identification of lysine crotonylation sites based on machine learning method on both plant and mammalian
  • 本地全文:下载
  • 作者:Rulan Wang ; Zhuo Wang ; Hongfei Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-77173-0
  • 出版社:Springer Nature
  • 摘要:Lysine crotonylation (Kcr) is a type of protein post-translational modification (PTM), which plays important roles in a variety of cellular regulation and processes. Several methods have been proposed for the identification of crotonylation. However, most of these methods can predict efficiently only on histone or non-histone protein. Therefore, this work aims to give a more balanced performance in different species, here plant (non-histone) and mammalian (histone) are involved. SVM (support vector machine) and RF (random forest) were employed in this study. According to the results of cross-validations, the RF classifier based on EGAAC attribute achieved the best predictive performance which performs competitively good as existed methods, meanwhile more robust when dealing with imbalanced datasets. Moreover, an independent test was carried out, which compared the performance of this study and existed methods based on the same features or the same classifier. The classifiers of SVM and RF could achieve best performances with 92% sensitivity, 88% specificity, 90% accuracy, and an MCC of 0.80 in the mammalian dataset, and 77% sensitivity, 83% specificity, 70% accuracy and 0.54 MCC in a relatively small dataset of mammalian and a large-scaled plant dataset respectively. Moreover, a cross-species independent testing was also carried out in this study, which has proved the species diversity in plant and mammalian.
国家哲学社会科学文献中心版权所有