首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:Probing rapid carbon fixation in fast-growing seaweed Ulva meridionalis using stable isotope 13 C-labelling
  • 其他标题:Probing rapid carbon fixation in fast-growing seaweed Ulva meridionalis using stable isotope 13 C-labelling
  • 本地全文:下载
  • 作者:Shuntaro Tsubaki ; Hiroshi Nishimura ; Tomoya Imai
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-77237-1
  • 出版社:Springer Nature
  • 摘要:The high growth rate of Ulva seaweeds makes it a potential algal biomass resource. In particular, Ulva meridionalis grows up to fourfold a day. Here, we demonstrated strong carbon fixation by U. meridionalis using 13C stable isotope labelling and traced the 13C flux through sugar metabolites with isotope-ratio mass spectrometry (IR-MS), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), 13C-nuclear magnetic resonance spectrometry (13C-NMR), and gas chromatography-mass spectrometry (GC–MS). U. meridionalis was first cultured in 13C-labelled enriched artificial seawater for 0–12 h, and the algae were collected every 4 h. U. meridionalis grew 1.8-fold (dry weight), and the 13C ratio reached 40% in 12 h, whereas 13C incorporation hardly occurred under darkness. At the beginning of the light period, 13C was incorporated into nucleic diphosphate (NDP) sugars in 4 h, and 13C labelled peaks were identified using FT-ICR-MS spectra. Using semiquantitative 13C-NMR measurements and GC–MS, 13C was detected in starch and matrix polysaccharides after the formation of NDP sugars. Moreover, the 14:10 light:dark regime resulted into 85% of 13C labelling was achieved after 72 h of cultivation. The rapid 13C uptake by U. meridionalis shows its strong carbon fixation capacity as a promising seaweed biomass feedstock.
国家哲学社会科学文献中心版权所有