摘要:A solution of the vibration attention problem on a flexible structure from a dynamic vibration absorption perspective is experimentally and numerically studied in this article. Linear and nonlinear dynamic vibration absorbers are properly implemented on a primary structure of n degrees of freedom through a modal decomposition analysis and using the tuning condition when the primary system has one single degree of freedom. A time-domain algebraic identification scheme for on-line modal parameter estimation of flexible structures is presented. A fast frequency estimation of harmonic excitation force is also obtained. A Hilbert transform analysis of the frequency response function for the case of nonlinear dynamic vibration absorption is introduced. In this way, influence of this particular passive nonlinear control device on system dynamic response can be determined. The proposed approach is validated on an harmonically perturbed building-like structure, which is discretized in a finite number of degrees of freedom. The flexible structure is subjected to resonant operational conditions, and coupled to a pendulum vibration absorber configured as a tuned mass damper as well as an autoparametric system.
关键词:tuned mass damper; autoparametric system; modal analysis; on-line estimation; vibration experiments tuned mass damper ; autoparametric system ; modal analysis ; on-line estimation ; vibration experiments