摘要:To improve flavor profiles, three cyclodextrin glucosyltransferases (CGTases) from different bacteriological sources, Paenibacillus macerans, Geobacillus sp. and Thermoanaerobacter sp., were used with an extract of steviol glycosides (SVglys) and rebaudioside A (RebA) as acceptor substrates in two parallel sets of reactions. A central composite experimental design was employed to maximize the concentration of glucosylated species synthesized, considering temperature, pH, time of reaction, enzymatic activity, maltodextrin concentration and SVglys/RebA concentration as experimental factors, together with their interactions. Liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-mass spectrometry (LC-ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were used to characterize and identify the chemical structures obtained along the optimization. To assess the impact on the sensory properties, a sensory analysis was carried out with a group of panelists that evaluated up to 16 sensorial attributes. CGTase transglucosylation of the C-13 and/or C-19 led to the addition of up to 11 glucose units to the steviol aglycone, which meant the achievement of enhanced sensory profiles due to a diminution of bitterness and licorice appreciations. The outcome herein obtained supposes the development of new potential alternatives to replace free sugars with low-calorie sweeteners with added health benefits.