首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Crowd Counting Guided by Attention Network
  • 本地全文:下载
  • 作者:Pei Nie ; Cien Fan ; Lian Zou
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2020
  • 卷号:11
  • 期号:12
  • 页码:567-576
  • DOI:10.3390/info11120567
  • 出版社:MDPI Publishing
  • 摘要:Crowd Crowd counting is not simply a matter of counting the numbers of people, but also requires that one obtains people’s spatial distribution in a picture. It is still a challenging task for crowded scenes, occlusion, and scale variation. This paper proposes a global and local attention network (GLANet) for efficient crowd counting, which applies an attention mechanism to enhance the features. Firstly, the feature extractor module (FEM) uses the pertained VGG-16 to parse out a simple feature map. Secondly, the global and local attention module (GLAM) effectively captures the local and global attention information to enhance features. Thirdly, the feature fusing module (FFM) applies a series of convolutions to fuse various features, and generate density maps. Finally, we conduct some experiments on a mainstream dataset and compare them with state-of-the-art methods’ performances.
  • 关键词:crowd counting; attention mechanism; global and local attention crowd counting ; attention mechanism ; global and local attention
国家哲学社会科学文献中心版权所有