首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:The Elements of Multi-Variate Analysis for Data Science
  • 其他标题:The Elements of Multi-Variate Analysis for Data Science
  • 本地全文:下载
  • 作者:Mohammad Samy BALADRAM ; Nobuaki OBATA
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2020
  • 卷号:26
  • 期号:1
  • 页码:41-86
  • DOI:10.4036/iis.2020.A.02
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:These lecture notes provide a quick review of basic concepts in statistical analysis and probability theory for data science. We survey general description of single- and multi-variate data, and derive regression models by means of the method of least squares. As theoretical backgrounds we provide basic knowledge of probability theory which is indispensable for further study of mathematical statistics and probability models. We show that the regression line for a multi-variate normal distribution coincides with the regression curve defined through the conditional density function. In Appendix matrix operations are quickly reviewed. These notes are based on the lectures delivered in Graduate Program in Data Science (GP-DS) and Data Sciences Program (DSP) at Tohoku University in 2018–2020.
  • 关键词:data matrix;method of least squares;multi-variate analysis;regression analysis;probability distribution
国家哲学社会科学文献中心版权所有