首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Active Selection Constraints for Semi-supervised Clustering Algorithms
  • 本地全文:下载
  • 作者:Walid Atwa ; Abdulwahab Ali Almazroi
  • 期刊名称:International Journal of Information Technology and Computer Science
  • 印刷版ISSN:2074-9007
  • 电子版ISSN:2074-9015
  • 出版年度:2020
  • 卷号:12
  • 期号:6
  • 页码:23-30
  • DOI:10.5815/ijitcs.2020.06.03
  • 出版社:MECS Publisher
  • 摘要:Semi.-supervised clustering algorithms aim to enhance the performance of clustering using the pairwise constraints. However, selecting these constraints randomly or improperly can minimize the performance of clustering in certain situations and with different applications. In this paper, we select the most informative constraints to improve semi-supervised clustering algorithms. We present an active selection of constraints, including active must.-link (AML) and active cannot.-link (ACL) constraints. Based on Radial-Bases Function, we compute lower-bound and upper-bound between data points to select the constraints that improve the performance. We test the proposed algorithm with the base-line methods and show that our proposed active pairwise constraints outperform other algorithms.
  • 关键词:Active learning;semi-supervised clustering;pairwise constraints
国家哲学社会科学文献中心版权所有