期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2020
卷号:11
期号:11
DOI:10.14569/IJACSA.2020.0111178
出版社:Science and Information Society (SAI)
摘要:In the medical field, mammogram analysis is one of the most important breast cancer detection procedures and early diagnosis. During the image acquisition process of mammograms, the acquired images may be contained some noises due to the change of illumination and sensor error. Hence, it is necessary to remove these noises without affecting the edges and fine details, achieving an effective diagnosis of beast images. In this work, a repeated median filtering method is proposed for denoising digital mammogram images. A number of experiments are conducted on a dataset of different mammogram images to evaluate the proposed method using a set of image quality metrics. Experimental results are reported by computing the image quality metrics between the original clean images and denoised images that are corrupted by different levels of simulated speckle noise as well as salt and paper noise. Evaluation quality metrics showed that the repeated median filter method achieves a higher result than the related traditional median filter method.
关键词:Mammogram images; image denoising; median filter; repeated median filtering; speckle noise; salt and paper noise