首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Unified Framework of FPT Approximation Algorithms for Clustering Problems
  • 本地全文:下载
  • 作者:Qilong Feng ; Zhen Zhang ; Ziyun Huang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:181
  • 页码:1-17
  • DOI:10.4230/LIPIcs.ISAAC.2020.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we present a framework for designing FPT approximation algorithms for many k-clustering problems. Our results are based on a new technique for reducing search spaces. A reduced search space is a small subset of the input data that has the guarantee of containing k clients close to the facilities opened in an optimal solution for any clustering problem we consider. We show, somewhat surprisingly, that greedily sampling O(k) clients yields the desired reduced search space, based on which we obtain FPT(k)-time algorithms with improved approximation guarantees for problems such as capacitated clustering, lower-bounded clustering, clustering with service installation costs, fault tolerant clustering, and priority clustering.
  • 关键词:clustering; approximation algorithms; fixed-parameter tractability
国家哲学社会科学文献中心版权所有