首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Between Shapes, Using the Hausdorff Distance
  • 本地全文:下载
  • 作者:Marc van Kreveld ; Tillmann Miltzow ; Tim Ophelders
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:181
  • 页码:1-16
  • DOI:10.4230/LIPIcs.ISAAC.2020.13
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given two shapes A and B in the plane with Hausdorff distance 1, is there a shape S with Hausdorff distance 1/2 to and from A and B? The answer is always yes, and depending on convexity of A and/or B, S may be convex, connected, or disconnected. We show a generalization of this result on Hausdorff distances and middle shapes, and show some related properties. We also show that a generalization of such middle shapes implies a morph with a bounded rate of change. Finally, we explore a generalization of the concept of a Hausdorff middle to more than two sets and show how to approximate or compute it.
  • 关键词:computational geometry; Hausdorff distance; shape interpolation
国家哲学社会科学文献中心版权所有