首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Sparsification Lower Bounds for List H-Coloring
  • 本地全文:下载
  • 作者:Hubie Chen ; Bart M. P. Jansen ; Karolina Okrasa
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:181
  • 页码:1-17
  • DOI:10.4230/LIPIcs.ISAAC.2020.58
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We investigate the List H-Coloring problem, the generalization of graph coloring that asks whether an input graph G admits a homomorphism to the undirected graph H (possibly with loops), such that each vertex v â^^ V(G) is mapped to a vertex on its list L(v) âS† V(H). An important result by Feder, Hell, and Huang [JGT 2003] states that List H-Coloring is polynomial-time solvable if H is a so-called bi-arc graph, and NP-complete otherwise. We investigate the NP-complete cases of the problem from the perspective of polynomial-time sparsification: can an n-vertex instance be efficiently reduced to an equivalent instance of bitsize ð'ª(n^(2-ε)) for some ε > 0? We prove that if H is not a bi-arc graph, then List H-Coloring does not admit such a sparsification algorithm unless NP âS† coNP/poly. Our proofs combine techniques from kernelization lower bounds with a study of the structure of graphs H which are not bi-arc graphs.
  • 关键词:List H-Coloring; Sparsification; Constraint Satisfaction Problem
国家哲学社会科学文献中心版权所有