首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Vertex Deletion into Bipartite Permutation Graphs
  • 本地全文:下载
  • 作者:Łukasz Bożyk ; Jan Derbisz ; Tomasz Krawczyk
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:180
  • 页码:1-16
  • DOI:10.4230/LIPIcs.IPEC.2020.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines ð"â, and ð"â,,, one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite permutation graph. This problem is NP-complete by the classical result of Lewis and Yannakakis [John M. Lewis and Mihalis Yannakakis, 1980]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time f(k)n^O(1), and also give a polynomial-time 9-approximation algorithm.
  • 关键词:permutation graphs; comparability graphs; partially ordered set; graph modification problems
国家哲学社会科学文献中心版权所有