首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Parameterized Complexity of Geodetic Set
  • 本地全文:下载
  • 作者:Leon Kellerhals ; Tomohiro Koana
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:180
  • 页码:1-14
  • DOI:10.4230/LIPIcs.IPEC.2020.20
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A vertex set S of a graph G is geodetic if every vertex of G lies on a shortest path between two vertices in S. Given a graph G and k â^^ â"., the NP-hard Geodetic Set problem asks whether there is a geodetic set of size at most k. Complementing various works on Geodetic Set restricted to special graph classes, we initiate a parameterized complexity study of Geodetic Set and show, on the negative side, that Geodetic Set is W[1]-hard when parameterized by feedback vertex number, path-width, and solution size, combined. On the positive side, we develop fixed-parameter algorithms with respect to the feedback edge number, the tree-depth, and the modular-width of the input graph.
  • 关键词:NP-hard graph problems; Shortest paths; Tree-likeness; Parameter hierarchy; Data reduction; Integer linear programming
国家哲学社会科学文献中心版权所有