首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Clustering Under Perturbation Stability in Near-Linear Time
  • 本地全文:下载
  • 作者:Pankaj K. Agarwal ; Hsien-Chih Chang ; Kamesh Munagala
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:182
  • 页码:1-16
  • DOI:10.4230/LIPIcs.FSTTCS.2020.8
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of center-based clustering in low-dimensional Euclidean spaces under the perturbation stability assumption. An instance is α-stable if the underlying optimal clustering continues to remain optimal even when all pairwise distances are arbitrarily perturbed by a factor of at most α. Our main contribution is in presenting efficient exact algorithms for α-stable clustering instances whose running times depend near-linearly on the size of the data set when α ≥ 2 â^S3. For k-center and k-means problems, our algorithms also achieve polynomial dependence on the number of clusters, k, when α ≥ 2 â^S3 ε for any constant ε > 0 in any fixed dimension. For k-median, our algorithms have polynomial dependence on k for α > 5 in any fixed dimension; and for α ≥ 2 â^S3 in two dimensions. Our algorithms are simple, and only require applying techniques such as local search or dynamic programming to a suitably modified metric space, combined with careful choice of data structures.
  • 关键词:clustering; stability; local search; dynamic programming; coreset; polyhedral metric; trapezoid decomposition; range query
国家哲学社会科学文献中心版权所有