首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Randomness Efficient Noise Stability and Generalized Small Bias Sets
  • 本地全文:下载
  • 作者:Dana Moshkovitz ; Justin Oh ; David Zuckerman
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:182
  • 页码:1-16
  • DOI:10.4230/LIPIcs.FSTTCS.2020.31
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present a randomness efficient version of the linear noise operator T_ρ from boolean function analysis by constructing a sparse linear operator on the space of boolean functions {0,1}ⁿ â†' {0,1} with similar eigenvalue profile to T_ρ. The linear operator we construct is a direct consequence of a generalization of ε-biased sets to the product distribution ð'Y_p on {0,1}ⁿ where the marginal of each coordinate is p = 1/2-1/2ρ. Such a generalization is a small support distribution that fools linear tests when the input of the test comes from ð'Y_p instead of the uniform distribution. We give an explicit construction of such a distribution that requires log n O_{p}(log log n log1/(ε)) bits of uniform randomness to sample from, where the p subscript hides O(log² 1/p) factors. When p and ε are constant, this yields a support size nearly linear in n, whereas previous best known constructions only guarantee a size of poly(n). Furthermore, our construction implies an explicitly constructible "sparse" noisy hypercube graph that is a small set expander.
  • 关键词:pseudorandomness; derandomization; epsilon biased sets; noise stability
国家哲学社会科学文献中心版权所有