首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Thermal pyrolysis of LDPE and LLDPE films in post-consumer packaging
  • 本地全文:下载
  • 作者:Douglas da Silva Vallada ; Carlos Alberto Mendes Moraes ; Paulo Ricardo Santos da Silva
  • 期刊名称:Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental
  • 电子版ISSN:2236-1170
  • 出版年度:2020
  • 卷号:24
  • 页码:23-49
  • DOI:10.5902/2236117062698
  • 出版社:Federal University of Santa Maria (UFSM)
  • 摘要:Os termoplásticos estão cada vez mais presentes no cotidiano da sociedade e nas mais variadas aplicações. Dentre os termoplásticos, o polietileno é o que apresenta o maior volume mundial de produção e consumo. Entretanto, grande parte de suas aplicações destina-se a produtos de curto tempo de vida útil, principalmente no setor de embalagens de alimentos. Tornam-se, assim, constituintes expressivos da composição do resíduo sólido urbano, levando a grandes quantidades depositadas frequentemente em aterros sanitários. Neste contexto, a pirólise surge como uma tecnologia para a reciclagem de resíduos plásticos, permitindo a recuperação dos monômeros que lhes deram origem. Através desse processo termoquímico, os resíduos são convertidos em três diferentes produtos: óleo ou em alguns casos cera, gases não condensáveis e uma fração sólida denominada carvão ou char. Assim, o objetivo do presente estudo é contribuir para o desenvolvimento da pirólise como tecnologia para tratamento final de resíduos de polietileno de baixa densidade (PEBD) e polietileno linear de baixa densidade (PELBD), provenientes de embalagens pós-consumo, através da análise da influência da temperatura de pirólise na composição química do óleo produzido, assim como a discussão de potenciais aplicações. Para tanto, os resíduos foram inicialmente caracterizados através das análises de espectroscopia por refletância total atenuada no infravermelho com transformada de Fourier (ATR-FTIR), termogravimetria (TGA), calorimetria exploratória diferencial (DSC) e fluorescência de raios-X (FRX). Os ensaios de caracterização mostraram que o resíduo plástico é constituído por 4,07% de cinzas, 0,52% de carbono fixo e 95,54% de matéria volátil, evidenciando seu grande potencial para a produção de óleo pirolítico. A degradação térmica do resíduo iniciou-se em torno de 410°C e se estendeu até cerca de 530°C, com máxima taxa de degradação térmica em cerca de 488°C. O processo de pirólise foi realizado com amostras de 50g de PEBD e PELBD pós-consumo, previamente aglutinados, com tamanho de partícula na faixa de 0,001mm a 4mm, em reator horizontal de quartzo, com atmosfera inerte de N2, taxa de aquecimento de 10°C/min e tempo de residência de 30min. Os ensaios foram conduzidos com temperaturas experimentais de 500°C e 700°C, a fim de verificar a influência da temperatura na composição química do óleo obtido no processo. A análise do óleo coletado a 500°C por espectroscopia de infravermelho, revelou um espectro similar ao do diesel comercial. Através de cromatografia gasosa acoplada a espectrometria de massas, verificou-se uma composição constituída predominantemente por olefinas (44%), de 8 a 35 átomos de carbono, seguida de parafinas (23,8%) e cicloparafinas (10%). Evidenciou-se ainda um percentual considerável de alfa-olefinas, importantes para a indústria petroquímica, e percentual de compostos aromáticos a nível de traço. Ao variar a temperatura para 700°C, ocorreu um aumento no teor de compostos aromáticos para 16,6%, acompanhado de uma redução no percentual de olefinas, parafinas e cicloparafinas. Os óleos obtidos em ambas as temperaturas têm potencial de aplicação em processos de craqueamento a vapor ou craqueamento catalítico convencional para a obtenção de matérias-primas da indústria petroquímica.
  • 其他摘要:Thermoplastics are increasingly present in the daily life of society in the most varied applications. Among the thermoplastics, polyethylene is the one that presents the higher volume of worldwide production and consumption. However, a large part of its applications are for products with a short shelf life, especially the food packaging sector. This way, they become expressive constituents in the composition of urban solid waste, leading to large quantities often being deposited in landfills. Pyrolysis appears as a technology for recycling plastic waste, allowing the recovery of the monomers that originated it. Through this thermochemical process, the waste is converted into three different products: oil or, in some cases wax, non-condensable gases, and a solid fraction named char. Thus, the goal of this study is to contribute for the development of pyrolysis as a technology for the final treatment of low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) waste from post-consumer packaging, through the analysis of the influence of the pyrolysis temperature in the chemical composition of the oil produced, as well as the discussion of possible applications. For this purpose, the waste was initially characterized through analyses of attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetry (TGA), differential scanning calorimetry (DSC), and X-ray fluorescence (XRF). The characterization experiments showed that the plastic waste is constituted of 4.07% ash, 0.52% fixed carbon, and 95.54% volatile matter, showing its great potential to produce pyrolytic oil. Thermal degradation of the waste initiated at around 410°C and continued through about 530°C, with maximum rate of thermal degradation at about 488°C. The pyrolysis process was carried out with 50g samples of post-consumer LDPE and LLDPE, previously agglutinated, with particle size ranging from 0.001mm to 4mm, in a horizontal quartz reactor, with an inert atmosphere of N2, heating rate of 10°C/min, and residence time of 30 minutes. The experiments were conducted with experimental temperatures of 500°C and 700°C, in order to verify the influence of the temperature in the chemical composition of the oil obtained in the process. The analysis of the oil collected at 500°C by infrared spectroscopy revealed a specter similar to the one of commercial diesel. Through gas chromatography coupled with mass spectrometry, it was verified a composition constituted mostly by olefins (44%), from 8 to 35 carbon atoms, followed by paraffins (23.8%), and cycloparaffins (10%). There was also a considerable percentage of alpha-olefins, important for the petrochemical industry, and a percentage of aromatic compounds on a trace level. By varying the temperature to 700°C, an increase in the level of aromatic compounds to 16.6% occurred, accompanied by a decrease in the percentage of olefins, paraffins, and cycloparaffins. The oils obtained in both temperatures have potential for application in steam cracking or conventional catalytic cracking processes to obtain the raw materials of the petrochemical industry.
  • 关键词:Resíduos;Polietileno;Pirólise
  • 其他关键词:Waste;Polyethylene;Pyrolysis
国家哲学社会科学文献中心版权所有