摘要:When using light-alloy drill pipes (LAIDP) with steel tool joints, the development of contact corrosion is observed under certain operating conditions. The value of corrosion mainly depends on the difference in electrochemical potential (ECP) of the contacting metals. One of the effective methods for increasing the corrosion resistance of aluminum alloys is the micro-arc oxidation (MAO) method. This is an electrochemical process in combination with micro-arc-discharges phenomena at the anode-electrolyte border, which allows forming ceramic coatings of aluminum oxides on the surface, including its high-toughness and wear-resistant phase - α-Al 2 O 3 (corundum). MAO-technology is a highly efficient and environmentally friendly process. At the forming of such a coating on the threaded part and in the tool joint zone of the pipe, a barrier for contact corrosion between the steel tool joint and the surface of the aluminum pipe is created. In this work, contact corrosion on samples in a pair of 1953T1 aluminum alloy - 40KhN2MA steel in a 5% NaCl solution at 80 °C was investigated. The data obtained showed the effectiveness of using protective MAO-coating to reduce contact corrosion and increase the reliability of the tool joint threaded connection of LAIDP.
其他摘要:When using light-alloy drill pipes (LAIDP) with steel tool joints, the development of contact corrosion is observed under certain operating conditions. The value of corrosion mainly depends on the difference in electrochemical potential (ECP) of the contacting metals. One of the effective methods for increasing the corrosion resistance of aluminum alloys is the micro-arc oxidation (MAO) method. This is an electrochemical process in combination with micro-arc-discharges phenomena at the anode-electrolyte border, which allows forming ceramic coatings of aluminum oxides on the surface, including its high-toughness and wear-resistant phase - α-Al 2 O 3 (corundum). MAO-technology is a highly efficient and environmentally friendly process. At the forming of such a coating on the threaded part and in the tool joint zone of the pipe, a barrier for contact corrosion between the steel tool joint and the surface of the aluminum pipe is created. In this work, contact corrosion on samples in a pair of 1953T1 aluminum alloy - 40KhN2MA steel in a 5% NaCl solution at 80 °C was investigated. The data obtained showed the effectiveness of using protective MAO-coating to reduce contact corrosion and increase the reliability of the tool joint threaded connection of LAIDP.