摘要:Badland reclamation and low productive farmlands always have been one of the most detrimental effects on the national economy, typically in agricultural sector of Uzbekistan. Nonetheless, such kind of lands has been used extensively for major crops like cotton and winter wheat. However, it is difficult to assessing real productivity of them. Advanced technologies as GIS and RS are vital tool for geospatially analysing and making decisions on this type of fields. This research was carried out for real-time crop monitoring and yield forecasting in case of low productive (3.5 ha) and high productive (8.3 ha) cotton areas of Jarkurgan district (Surkhandarya region, Uzbekistan) based on geospatial analyses of multi-temporal satellite images, condition of groundwater, soil salinity, and ground truth data. For monitoring vegetation phenology of cotton and forecasting its harvest, False Colour, NDVI (Normalized Difference Vegetation Index) and SI (Salinity Index) analyses of areas were carried out by using 6 temporal windows of multi-temporal Sentinel 2 from April through August 2019. Besides, groundwater condition data which was obtained from observation wells these located in massives consists of both cotton fields was analysed by IDW (Inverse Distance Weighting) interpolation algorithm method to determine groundwater’s effect to vegetation development and yield.
其他摘要:Badland reclamation and low productive farmlands always have been one of the most detrimental effects on the national economy, typically in agricultural sector of Uzbekistan. Nonetheless, such kind of lands has been used extensively for major crops like cotton and winter wheat. However, it is difficult to assessing real productivity of them. Advanced technologies as GIS and RS are vital tool for geospatially analysing and making decisions on this type of fields. This research was carried out for real-time crop monitoring and yield forecasting in case of low productive (3.5 ha) and high productive (8.3 ha) cotton areas of Jarkurgan district (Surkhandarya region, Uzbekistan) based on geospatial analyses of multi-temporal satellite images, condition of groundwater, soil salinity, and ground truth data. For monitoring vegetation phenology of cotton and forecasting its harvest, False Colour, NDVI (Normalized Difference Vegetation Index) and SI (Salinity Index) analyses of areas were carried out by using 6 temporal windows of multi-temporal Sentinel 2 from April through August 2019. Besides, groundwater condition data which was obtained from observation wells these located in massives consists of both cotton fields was analysed by IDW (Inverse Distance Weighting) interpolation algorithm method to determine groundwater’s effect to vegetation development and yield.