首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Relationship between Na layer and CNA variations observed at Syowa, Antarctic
  • 本地全文:下载
  • 作者:T. T. Tsuda ; Y. -M. Tanaka ; R. Tozu
  • 期刊名称:Earth, Planets and Space
  • 电子版ISSN:1880-5981
  • 出版年度:2021
  • 卷号:73
  • 期号:1
  • 页码:1-10
  • DOI:10.1186/s40623-020-01335-7
  • 出版社:Springer Verlag
  • 摘要:Abstract We have performed a statistical data analysis on relationship between simultaneous Na density data and cosmic noise absorption (CNA) data, which is an indicator for energetic particle precipitation, obtained at Syowa, Antarctic in 2000–2002. It is found that the Na densities around the topside of Na layers (above $$\sim 95 \,\hbox {km}$$ ∼ 95 km height) tended to be smaller when the CNA was larger. The amounts of Na density responses, i.e., Na density decrease or Na loss, were increasing with magnetic local time (MLT) from dusk hours to dawn hours, and those of CNA responses, i.e., CNA increase, were also increasing with MLT. Thus, there were clear negative correlations between the Na density and CNA variations. These results indicate that the Na loss around the topside of Na layer would be induced by the energetic particle precipitation, and its effect would be more severe in dawn hours.
  • 其他摘要:Abstract We have performed a statistical data analysis on relationship between simultaneous Na density data and cosmic noise absorption (CNA) data, which is an indicator for energetic particle precipitation, obtained at Syowa, Antarctic in 2000–2002. It is found that the Na densities around the topside of Na layers (above $$\sim 95 \,\hbox {km}$$ ∼ 95 km height) tended to be smaller when the CNA was larger. The amounts of Na density responses, i.e., Na density decrease or Na loss, were increasing with magnetic local time (MLT) from dusk hours to dawn hours, and those of CNA responses, i.e., CNA increase, were also increasing with MLT. Thus, there were clear negative correlations between the Na density and CNA variations. These results indicate that the Na loss around the topside of Na layer would be induced by the energetic particle precipitation, and its effect would be more severe in dawn hours.
国家哲学社会科学文献中心版权所有