首页    期刊浏览 2024年07月20日 星期六
登录注册

文章基本信息

  • 标题:Penetration of the electric fields of the geomagnetic sudden commencement over the globe as observed with the HF Doppler sounders and magnetometers
  • 本地全文:下载
  • 作者:Takashi Kikuchi ; Jaroslav Chum ; Ichiro Tomizawa
  • 期刊名称:Earth, Planets and Space
  • 电子版ISSN:1880-5981
  • 出版年度:2021
  • 卷号:73
  • 期号:1
  • 页码:1-13
  • DOI:10.1186/s40623-020-01350-8
  • 出版社:Springer Verlag
  • 摘要:Abstract Using the HF Doppler sounders at middle and low latitudes (Prague, Czech Republic; Tucuman, Argentina; Zhongli, Republic of China, and Sugadaira, Japan), we observed the electric fields of the geomagnetic sudden commencement (SC) propagating near-instantaneously (within 10 s) over the globe. We found that the electric fields of the preliminary impulse (PI) and main impulse (MI) of the SC are in opposite direction to each other and that the PI and MI electric fields are directed from the dusk to dawn and dawn to dusk, respectively, manifesting the nature of the curl-free potential electric field. We further found that the onset and peak of the PI electric field are simultaneous on the day and nightsides (0545, 1250, 1345 MLT) within the resolution of 10 s. With the magnetometer data, we confirmed the near-instantaneous development of the ionospheric currents from high latitudes to the equator and estimated the location of the field-aligned currents that supply the ionospheric currents. The global simultaneity of the electric and magnetic fields does not require the contribution of the magnetohydrodynamic waves in the magnetosphere nor in the F-region ionosphere. The global simultaneity and day–night asymmetry of the electric fields are explained with the ionospheric electric potentials transmitted at the speed of light by the TM 0 mode waves in the Earth-ionosphere waveguide.
  • 其他摘要:Abstract Using the HF Doppler sounders at middle and low latitudes (Prague, Czech Republic; Tucuman, Argentina; Zhongli, Republic of China, and Sugadaira, Japan), we observed the electric fields of the geomagnetic sudden commencement (SC) propagating near-instantaneously (within 10 s) over the globe. We found that the electric fields of the preliminary impulse (PI) and main impulse (MI) of the SC are in opposite direction to each other and that the PI and MI electric fields are directed from the dusk to dawn and dawn to dusk, respectively, manifesting the nature of the curl-free potential electric field. We further found that the onset and peak of the PI electric field are simultaneous on the day and nightsides (0545, 1250, 1345 MLT) within the resolution of 10 s. With the magnetometer data, we confirmed the near-instantaneous development of the ionospheric currents from high latitudes to the equator and estimated the location of the field-aligned currents that supply the ionospheric currents. The global simultaneity of the electric and magnetic fields does not require the contribution of the magnetohydrodynamic waves in the magnetosphere nor in the F-region ionosphere. The global simultaneity and day–night asymmetry of the electric fields are explained with the ionospheric electric potentials transmitted at the speed of light by the TM 0 mode waves in the Earth-ionosphere waveguide.
国家哲学社会科学文献中心版权所有