首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Electrical conductive fluid-rich zones and their influence on the earthquake initiation, growth, and arrest processes: observations from the 2016 Kumamoto earthquake sequence, Kyushu Island, Japan
  • 本地全文:下载
  • 作者:Koki Aizawa ; Shinichi Takakura ; Hisafumi Asaue
  • 期刊名称:Earth, Planets and Space
  • 电子版ISSN:1880-5981
  • 出版年度:2021
  • 卷号:73
  • 期号:1
  • 页码:1-12
  • DOI:10.1186/s40623-020-01340-w
  • 出版社:Springer Verlag
  • 摘要:Abstract Crustal earthquake ruptures tend to initiate near fluid-rich zones. However, it is relatively unknown whether fluid-rich zones can further promote or arrest these ruptures. We image the electrical resistivity structure around the focal area of the 2016 Kumamoto earthquake sequence by using 200 sites broadband magnetotelluric data, and discuss its quantitative relationship to earthquake initiation, growth, and arrest processes. The ruptures that initiated along the outer edge of the low-resistivity fluid-rich zones ( 400 °C) fluid-rich zones, whereas shallower low-temperature (200–400 °C) fluid-rich zones either promoted or arrested the ruptures. These results suggest that the distribution of mid-crustal fluids contributes to the initiation, growth, and arrest of crustal earthquakes. The pre-failure pressure/temperature gradient (spatial difference) of the pore fluids may contribute to the rupture initiation, propagation, and arrest.
  • 其他摘要:Abstract Crustal earthquake ruptures tend to initiate near fluid-rich zones. However, it is relatively unknown whether fluid-rich zones can further promote or arrest these ruptures. We image the electrical resistivity structure around the focal area of the 2016 Kumamoto earthquake sequence by using 200 sites broadband magnetotelluric data, and discuss its quantitative relationship to earthquake initiation, growth, and arrest processes. The ruptures that initiated along the outer edge of the low-resistivity fluid-rich zones ( 400 °C) fluid-rich zones, whereas shallower low-temperature (200–400 °C) fluid-rich zones either promoted or arrested the ruptures. These results suggest that the distribution of mid-crustal fluids contributes to the initiation, growth, and arrest of crustal earthquakes. The pre-failure pressure/temperature gradient (spatial difference) of the pore fluids may contribute to the rupture initiation, propagation, and arrest.
国家哲学社会科学文献中心版权所有