首页    期刊浏览 2024年07月19日 星期五
登录注册

文章基本信息

  • 标题:Metabolism of Black Carrot Polyphenols during In Vitro Fermentation Is Not Affected by Cellulose or Cell Wall Association
  • 本地全文:下载
  • 作者:Gabriele Netzel ; Deirdre Mikkelsen ; Bernadine M. Flanagan
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2020
  • 卷号:9
  • 期号:12
  • 页码:1-16
  • DOI:10.3390/foods9121911
  • 出版社:MDPI Publishing
  • 摘要:Fruit and vegetable polyphenols are associated with health benefits, and those not absorbed could be fermented by the gastro-intestinal tract microbiota. Many fermentation studies focus on “pure” polyphenols, rather than those associated with plant cell walls (PCW). Black carrots (BlkC), are an ideal model plant food as their polyphenols bind to PCW with minimal release after gastro-intestinal digestion. BlkC were fractionated into three components—supernatant, pellet after centrifugation, and whole puree. Bacterial cellulose (BCell) was soaked in supernatant (BCell&S) as a model substrate. All substrates were fermented in vitro with a pig faecal inoculum. Gas kinetics, short chain fatty acids, and ammonium production, and changes in anthocyanins and phenolic acids were compared. This study showed that metabolism of BlkC polyphenols during in vitro fermentation was not affected by cellulose/cell wall association. In addition, BCell&S is an appropriate model to represent BlkC fermentation, suggesting the potential to examine fermentability of PCW-associated polyphenols in other fruits/vegetables.
  • 关键词:bacterial cellulose; in vitro fermentation; black carrot; polyphenols; anthocyanins; phenolic acids bacterial cellulose ; in vitro fermentation ; black carrot ; polyphenols ; anthocyanins ; phenolic acids
国家哲学社会科学文献中心版权所有