首页    期刊浏览 2025年10月12日 星期日
登录注册

文章基本信息

  • 标题:1階、2階線形斉次非斉次常微分方程式の数値解法について
  • 本地全文:下载
  • 作者:武本 行正 ; 高橋 正昭 ; 石田 修二
  • 期刊名称:四日市大学論集
  • 印刷版ISSN:1340-5543
  • 电子版ISSN:2433-4685
  • 出版年度:2018
  • 卷号:31
  • 期号:2
  • 页码:249-268
  • DOI:10.24584/jyu.31.2_249
  • 出版社:四日市大学
  • 摘要:Numerical solution of ordinary differential equations usually applies the fourth order precision Runge-Kutta method, and it is common to find a solution by this finite difference approximation. As for the analytic solutions, many books are published recently. However, there are not so many documents for the numerical solutions. Here, we show some exercises and show the program of the C language. Based on these results, we want to discuss them about some problems and the future prospects.
  • 关键词:1階、2階線形常微分方程式;斉次・非斉次式;数値解法;ルンゲ・クッタ法
国家哲学社会科学文献中心版权所有