首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:CFD simulation and validation of self-cleaning on solar panel surfaces with superhydrophilic coating
  • 本地全文:下载
  • 作者:Jin Hu ; Nicolas Bodard ; Osmann Sari
  • 期刊名称:Future Cities and Environment
  • 电子版ISSN:2363-9075
  • 出版年度:2015
  • 卷号:1
  • 页码:8-22
  • DOI:10.1186/s40984-015-0006-7
  • 摘要:Solar panel conversion efficiency, typically in the twenty percent range, is reduced by dust, grime, pollen, and other particulates that accumulate on the solar panel. Cleaning dirty panels to maintain peak efficiency, which is especially hard to do for large solar-panel arrays. To develop a transparent, anti-soiling Nano-TiO 2 coating to minimize the need for occasional cleaning is the purpose of this study. In our study, a 2D rainwater runoff model along tilted solar panel surface based on the Nusselt solution was established to have better understanding and predicting the behavior of runoff rain water, especially in contact with solar-panel surfaces with Nano-TiO 2 coating. Our simulation results demonstrate that solar-panel surfaces with Nano-TiO 2 coating create a superhydrophilic surface which cannot hold water, showing features of more pronounced in increasing runoff water film velocity comparing to the uncoated surfaces during raining event resulting in better effect of self-cleaning. Validation of our model was performed on titled solar panels for real time outdoor exposure testing in Switzerland. It is found that the dust particles are not easy to adhere to the coated surfaces of the slides comparing with uncoated surfaces, showing great potential for its use in harsh environmental conditions. This study suggests that superhydrophilic self-cleaning solar panel coating maximize energy collection and increases the solar panel’s energy efficiency.
  • 关键词:Nano-TiO 2 coating; Self-cleaning; 2D runoff model; Solar-panel surfaces
国家哲学社会科学文献中心版权所有