首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Markov-Switching GARCH Models in R: The MSGARCH Package
  • 本地全文:下载
  • 作者:David Ardia ; Keven Bluteau ; Kris Boudt
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:91
  • 期号:1
  • 页码:1-38
  • DOI:10.18637/jss.v091.i04
  • 出版社:University of California, Los Angeles
  • 摘要:We describe the package MSGARCH, which implements Markov-switching GARCH (generalized autoregressive conditional heteroscedasticity) models in R with efficient C object-oriented programming. Markov-switching GARCH models have become popular methods to account for regime changes in the conditional variance dynamics of time series. The package MSGARCH allows the user to perform simulations as well as maximum likelihood and Bayesian Markov chain Monte Carlo estimations of a very large class of Markov-switching GARCH-type models. The package also provides methods to make single-step and multi-step ahead forecasts of the complete conditional density of the variable of interest. Risk management tools to estimate conditional volatility, value-at-risk, and expected-shortfall are also available. We illustrate the broad functionality of the MSGARCH package using exchange rate and stock market return data.
  • 关键词:GARCH; MSGARCH; Markov-switching; conditional volatility; forecasting; R software.
  • 其他关键词:GARCH;MSGARCH;Markov-switching;conditional volatility;forecasting;R software
国家哲学社会科学文献中心版权所有