首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:SimInf: An R Package for Data-Driven Stochastic Disease Spread Simulations
  • 本地全文:下载
  • 作者:Stefan Widgren ; Pavol Bauer ; Robin Eriksson
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:91
  • 期号:1
  • 页码:1-42
  • DOI:10.18637/jss.v091.i12
  • 出版社:University of California, Los Angeles
  • 摘要:We present the R package SimInf which provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goals was to make SimInf extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. In this paper, we provide a technical description of the framework and demonstrate its use on some basic examples. We also discuss how to specify and extend the framework with user-defined models.
  • 关键词:computational epidemiology; discrete-event simulation; multicore implementation;
  • 其他关键词:computational epidemiology;discrete-event simulation;multicore implementation;stochastic modeling
国家哲学社会科学文献中心版权所有