首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Applications of Clustering Techniques in Data Mining: A Comparative Study
  • 本地全文:下载
  • 作者:Muhammad Faizan ; Megat F. Zuhairi ; Shahrinaz Ismail
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2020
  • 卷号:11
  • 期号:12
  • 页码:146-153
  • DOI:10.14569/IJACSA.2020.0111218
  • 出版社:Science and Information Society (SAI)
  • 摘要:In modern scientific research, data analyses are often used as a popular tool across computer science, communication science, and biological science. Clustering plays a significant role in the reference composition of data analysis. Clustering, recognized as an essential issue of unsupervised learning, deals with the segmentation of the data structure in an unknown region and is the basis for further understanding. Among many clustering algorithms, “more than 100 clustering algorithms known” because of its simplicity and rapid convergence, the K-means clustering algorithm is commonly used. This paper explains the different applications, literature, challenges, methodologies, considerations of clustering methods, and related key objectives to implement clustering with big data. Also, presents one of the most common clustering technique for identification of data patterns by performing an analysis of sample data.
  • 关键词:Clustering; data analysis; data mining; unsupervised learning; k-mean; algorithms
国家哲学社会科学文献中心版权所有