首页    期刊浏览 2025年06月22日 星期日
登录注册

文章基本信息

  • 标题:Optimal Detection of Bilinear Dependence in Short Panels of Regression Data
  • 本地全文:下载
  • 作者:Aziz Lmakri ; Abdelhadi Akharif ; Amal Mellouk
  • 期刊名称:Revista Colombiana de Estadística
  • 印刷版ISSN:2389-8976
  • 出版年度:2020
  • 卷号:43
  • 期号:2
  • 页码:143-171
  • DOI:10.15446/rce.v43n2.83044
  • 出版社:Universidad Nacional de Colombia, sede Bogotá
  • 摘要:In this paper, we propose parametric and nonparametric locally andasymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n, small T). We establish a local asymptotic normality property– with respect to intercept μ, regression coefficient β, the scale parameter σ of the error, and the parameter b of panel superdiagonal bilinear model (which is the parameter of interest)– for a given density f1 of the error terms. Rank-based versions of optimal parametric tests are provided. This result, which allows, by Hájek’s representation theorem, the construction of locally asymptotically optimal rank-based tests for the null hypothesis b = 0 (absence of panel superdiagonal bilinear model). These tests –at specified innovation densities f1– are optimal (most stringent), but remain valid under any actual underlying density. From contiguity, we obtain the limiting distribution of our test statistics under the null and local sequences of alternatives. The asymptotic relative efficiencies, with respect to the pseudo-Gaussian parametric tests, are derived. A Monte Carlo study confirms the good performance of the proposed tests.
  • 关键词:Datos de panel;Linealidad asintótica local;Normalidad asintótica local;Proceso bilineal;Prueba pseudo-gaussiana;Pruebas de rango
国家哲学社会科学文献中心版权所有