首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Convergence Theorems in Multinomial Saturated and Logistic Models
  • 本地全文:下载
  • 作者:Erick Orozco-Acosta ; Humberto LLinás-Solano ; Javier Fonseca-Rodríguez
  • 期刊名称:Revista Colombiana de Estadística
  • 印刷版ISSN:2389-8976
  • 出版年度:2020
  • 卷号:43
  • 期号:2
  • 页码:211-231
  • DOI:10.15446/rce.v43n2.79151
  • 出版社:Universidad Nacional de Colombia, sede Bogotá
  • 摘要:In this paper, we develop a theoretical study about the logistic and saturated multinomial models when the response variable takes one of R ≥ 2 levels. Several theorems on the existence and calculations of the maximum likelihood (ML) estimates of the parameters of both models are presented and demonstrated. Furthermore, properties are identified and, based on an asymptotic theory, convergence theorems are tested for score vectors and information matrices of both models. Finally, an application of this theory is presented and assessed using data from the R statistical program.
  • 关键词:Modelo logístico multinomial;Modelo saturado;Regresión logística;Estimador de máxima verosimilitud;Vector score;Matriz de información de Fisher
国家哲学社会科学文献中心版权所有