首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Personalized treatment options for chronic diseases using precision cohort analytics
  • 本地全文:下载
  • 作者:Kenney Ng ; Uri Kartoun ; Harry Stavropoulos
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1139
  • DOI:10.1038/s41598-021-80967-5
  • 出版社:Springer Nature
  • 摘要:To support point-of-care decision making by presenting outcomes of past treatment choices for cohorts of similar patients based on observational data from electronic health records (EHRs), a machine-learning precision cohort treatment option (PCTO) workflow consisting of (1) data extraction, (2) similarity model training, (3) precision cohort identification, and (4) treatment options analysis was developed. The similarity model is used to dynamically create a cohort of similar patients, to inform clinical decisions about an individual patient. The workflow was implemented using EHR data from a large health care provider for three different highly prevalent chronic diseases: hypertension (HTN), type 2 diabetes mellitus (T2DM), and hyperlipidemia (HL). A retrospective analysis demonstrated that treatment options with better outcomes were available for a majority of cases (75%, 74%, 85% for HTN, T2DM, HL, respectively). The models for HTN and T2DM were deployed in a pilot study with primary care physicians using it during clinic visits. A novel data-analytic workflow was developed to create patient-similarity models that dynamically generate personalized treatment insights at the point-of-care. By leveraging both knowledge-driven treatment guidelines and data-driven EHR data, physicians can incorporate real-world evidence in their medical decision-making process when considering treatment options for individual patients.
国家哲学社会科学文献中心版权所有