首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:A comprehensive study on the microstructure evolution and oxidation resistance of conventional and nanocrystalline MCrAlY coatings
  • 本地全文:下载
  • 作者:Farzin Ghadami ; Alireza Sabour Rouh Aghdam ; Soheil Ghadami
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:875
  • DOI:10.1038/s41598-020-79323-w
  • 出版社:Springer Nature
  • 摘要:Conventional and nanocrystalline MCrAlY coatings were applied by the high-velocity oxy-fuel (HVOF) deposition process. The ball-milling method was used to prepare the nanocrystalline MCrAlY powder feedstock. The microstructure examinations of the conventional and nanocrystalline powders and coatings were performed using X-ray diffraction (XRD), high-resolution field emission scanning electron microscope (FESEM) equipped with energy-dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Williamson–Hall analyzing method was also used for estimation of the crystalline size and lattice strain of the as-milled powders and sprayed coatings. Owing to the investigation of the oxidation behavior, the freestanding coatings were subjected to isothermal and cyclic oxidation testing at 1000 and 1100 °C under static air. The results showed that the conventional as-sprayed MCrAlY coating had a parabolic behavior in the early stage and prolonged oxidation process. On the contrary, in the case of the nanocrystalline MCrAlY coating, the long-term oxidation behavior has deviated from parabolic to sub-parabolic rate law. Moreover, the results also exemplified that the nanocrystalline MCrAlY coating had a greater oxidation resistance following the creation of a continuous and slow-growing Al2O3 scale with a fine-grained structure. The nucleation and growth mechanisms of the oxides formed on the nanocrystalline coating have also been discussed in detail.
国家哲学社会科学文献中心版权所有