首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
  • 本地全文:下载
  • 作者:Meisam Babanezhad ; Iman Behroyan ; Ali Taghvaie Nakhjiri
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:902
  • DOI:10.1038/s41598-020-79628-w
  • 出版社:Springer Nature
  • 摘要:Heat transfer augmentation of the nanofluids is still an attractive concept for researchers due to rising demands for designing efficient heat transfer fluids. However, the pressure loss arisen from the suspension of nanoparticles in liquid is known as a drawback for developing such novel fluids. Therefore, prediction of the nanofluid pressure, especially in internal flows, has been focused on studies. Computational fluid dynamics (CFD) is a commonly used approach for such a prediction of fluid flow. The CFD tools are perfect and precise in prediction of the fluid flow parameters. But they might be time-consuming and expensive, especially for complex models such as 3-dimension modeling and turbulent flow. In addition, the CFD could just predict the pressure, and it is disabled for finding the relationship of such variables. This study is intended to show the performance of the artificial intelligence (AI) algorithm as an auxiliary method for cooperation with the CFD. The turbulent flow of Cu/water nanofluid warming up in a pipe is considered as a sample of a physical phenomenon. The AI algorithm learns the CFD results. Then, the relation between the CFD results is discovered by the AI algorithm. For this purpose, the adaptive network-based fuzzy inference system (ANFIS) is adopted as AI tool. The intelligence condition of the ANFIS is checked by benchmarking the CFD results. The paper outcomes indicated that the ANFIS intelligence is met by employing gauss2mf in the model as the membership function and x, y, and z coordinates, the nanoparticle volume fraction, and the temperature as the inputs. The pressure predicted by the ANFIS at this condition is the same as that predicted by the CFD. The artificial intelligence of ANFIS could find the relation of the nanofluid pressure to the nanoparticle fraction and the temperature. The CFD simulation took much more time (90–110 min) than the total time of the learning and the prediction of the ANFIS (369 s). The CFD modeling was done on a workstation computer, while the ANFIS method was run on a normal desktop.
国家哲学社会科学文献中心版权所有