首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Parameters optimization method for the time-delayed reservoir computing with a nonlinear duffing mechanical oscillator
  • 本地全文:下载
  • 作者:T. Y. Zheng ; W. H. Yang ; J. Sun
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:997
  • DOI:10.1038/s41598-020-80339-5
  • 出版社:Springer Nature
  • 摘要:Reservoir computing (RC) is a recently introduced bio-inspired computational framework capable of excellent performances in the temporal data processing, owing to its derivation from the recurrent neural network (RNN). It is well-known for the fast and effective training scheme, as well as the ease of the hardware implementation, but also the problematic sensitivity of its performance to the optimizable architecture parameters. In this article, a particular time-delayed RC with a single clamped–clamped silicon beam resonator that exhibits a classical Duffing nonlinearity is presented and its optimization problem is studied. Specifically, we numerically analyze the nonlinear response of the resonator and find a quasi-linear bifurcation point shift of the driving voltage with the driving frequency sweeping, which is called Bifurcation Point Frequency Modulation (BPFM). Furthermore, we first proposed that this method can be used to find the optimal driving frequency of RC with a Duffing mechanical resonator for a given task, and then put forward a comprehensive optimization process. The high performance of RC presented on four typical tasks proves the feasibility of this optimization method. Finally, we envision the potential application of the method based on the BPFM in our future work to implement the RC with other mechanical oscillators.
国家哲学社会科学文献中心版权所有