摘要:Abstract This study aimed to develop and validate a novel rabbit fixator made from a thermoplastic mask for awake imaging experiments. When heated in a hot-water bath at 65–70 °C for 2–5 min, the thermoplastic mask became soft and could be molded to fit over the entire body of an anesthetized rabbit (4 ml of 3% pentobarbital sodium solution by intramuscular injection). Twenty rabbits were randomly divided into fixator (n = 10) and anesthesia (n = 10) groups. The animals’ vital signs, stress hormones (cortisol and adrenaline) , and subjective image quality scores for the computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) scanning were measured and compared. Phantom CT, MRI and PET studies were performed to assess the performance with and without the thermoplastic mask by using image agents at different concentrations or with different radioactivity. The respiration rate (RR), systolic blood pressure (SBP), diastolic blood pressure (DBP), peripheral capillary oxygen saturation (SpO 2 ) and body temperature (T) decreased after anesthesia (all P 0.05). The heart rate (HR), cortisol and adrenaline did not significantly decrease after either anesthesia or fixation (all P > 0.05). The subjective image quality scores for the CT and MRI images of the head, thorax, liver, kidney, intestines and pelvis and the subjective image quality scores for the PET images did not significantly differ between the two groups (all P > 0.05). For all examined organs except the muscle, 18 F-FDG metabolism was lower after fixation than after anesthesia, and was almost identical of liver between two groups. The phantom study showed that the CT values, standard uptake values and MR T2 signal values did not differ significantly with or without the mask (all P > 0.05). A novel rabbit fixator created using a thermoplastic mask could be used to obtain high-quality images for different imaging modalities in an awake and near-physiological state.