首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles
  • 本地全文:下载
  • 作者:Diogo Henrique Kita ; Nathalie Guragossian ; Ingrid Fatima Zattoni
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1788
  • DOI:10.1038/s41598-020-79892-w
  • 出版社:Springer Nature
  • 摘要:Abstract The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2- b ]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC 50 values below 0.5 µM. The ratio between cytotoxicity (IG 50 ) and ABCG2 inhibition potency (IC 50 ) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2- b ]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2- b ]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2- b ]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2- b ]indole derivatives share the same binding site as the substrate estrone-3-sulfate.
国家哲学社会科学文献中心版权所有