首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images
  • 本地全文:下载
  • 作者:Kangrok Oh ; Hae Min Kang ; Dawoon Leem
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1897
  • DOI:10.1038/s41598-021-81539-3
  • 出版社:Springer Nature
  • 摘要:Abstract Visually impaired and blind people due to diabetic retinopathy were 2.6 million in 2015 and estimated to be 3.2 million in 2020 globally. Though the incidence of diabetic retinopathy is expected to decrease for high-income countries, detection and treatment of it in the early stages are crucial for low-income and middle-income countries. Due to the recent advancement of deep learning technologies, researchers showed that automated screening and grading of diabetic retinopathy are efficient in saving time and workforce. However, most automatic systems utilize conventional fundus photography, despite ultra-wide-field fundus photography provides up to 82% of the retinal surface. In this study, we present a diabetic retinopathy detection system based on ultra-wide-field fundus photography and deep learning. In experiments, we show that the use of early treatment diabetic retinopathy study 7-standard field image extracted from ultra-wide-field fundus photography outperforms that of the optic disc and macula centered image in a statistical sense.
国家哲学社会科学文献中心版权所有