首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Learning Automata and Transducers: A Categorical Approach
  • 本地全文:下载
  • 作者:Thomas Colcombet ; Daniela PetriÅYan ; Riccardo Stabile
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:183
  • 页码:15:1-15:17
  • DOI:10.4230/LIPIcs.CSL.2021.15
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we present a categorical approach to learning automata over words, in the sense of the L*-algorithm of Angluin. This yields a new generic L*-like algorithm which can be instantiated for learning deterministic automata, automata weighted over fields, as well as subsequential transducers. The generic nature of our algorithm is obtained by adopting an approach in which automata are simply functors from a particular category representing words to a "computation category". We establish that the sufficient properties for yielding the existence of minimal automata (that were disclosed in a previous paper), in combination with some additional hypotheses relative to termination, ensure the correctness of our generic algorithm.
  • 关键词:Automata; transducer; learning; category
国家哲学社会科学文献中心版权所有